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On the work hardening behaviour of metallic 
materials with spherical second-phase 
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The work hardening behaviour of metallic materials with spherical second-phase particles 
at elevated temperatures has been discussed theoretically, based on the continuum 
mechanics model which incorporated the effect of the dynamic recovery by diffusion 
of atoms. It was found that the theoretical model developed in this study could satis- 
factorily explain the experimental results of tensile tests in an austenitic heat-resisting 
steel with M23C6 carbides. The model was also applied to the understanding of the 
internal stress during high-temperature creep in this steel. 

1. Introduction 
Theoretical discussions based on continuum 
mechanics have recently been made on the tem- 
perature dependence of work hardening due to 
second-phase particles in metallic materials. Mori 
and co-workers [1, 2] and Matsuura [3, 4] have 
discussed the mechanisms of static and dynamic 
recovery in the dispersion strengthened metals 
below about 0.4Tin (Tin is the melting point of 
base metal), where the pipe diffusion is considered 
to control the climb and annihilation of Orowan 
loops formed around particles during deformation. 

At high temperatures above about 0.5Tm, 
recovery and creep are controlled by volume diffu- 
sion or grain boundary diffusion of atoms. Ashby 
[5] theoretically discussed the particle size depen- 
dence of grain boundary sliding of dispersion- 
strengthened metals during creep in this tempera- 
ture range. However, the dislocation structure 
around second-phase particles is generally so com- 
plex that a quantitative interpretation has not 
fully been made on the work hardening behaviour 
of the material at elevated temperatures. 

In this study, temperature and particle size 
dependence of the work hardening at high tem- 
peratures (where volume diffusion of atoms con- 
trols the dynamic recovery, have been calculated 
using a continuum mechanics model. The result 

of the calculation based on this model was then 
compared with that of experiment for an austenitic 
heat-resisting steel with M23C6 carbides. 

2. Calculation 
The deformation of metallic materials with non- 
deforming spherical precipitates is considered. 
It is assumed that plastic deformation occurs only 
in the matrix under an external stress in the x3- 
direction, cr~ (e~3 = e*, eT1 = e~2 = - -  e*/2). The 
Gibbs free energy of the material owing to plastic 
deformation is given by [6] 

G = ~Alae*2fVo + Bo~e* fVo  + Ooe*Vo 

- o ~ . ~ e * V o  + Eo(oa3) (l) 

where /a is the rigidity of matrix, Vo the total 
volume of the material, N the number of precipi- 
tate particles, V the volume of a particle, and f = 
NV/Vo.  A and B are the shape factors which are 
functions of the rigidity and Poisson's ratio of the 
matrix and the precipitates. The first term in 
Equation 1 is the elastic strain energy, the second 
is the interaction energy between external stress 
and internal stress field, and the third is the energy 
dissipation due to plastic deformation in matrix, 
where Oo is the yield stress. The fourth term in 
Equation 1 is the decrease in external potential 
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Figure 1 Schematic illustration 
of the accommodation of the 
misfit strain by diffusion of 
atoms in matrix. 

owing to plastic deformation, and Eo(o~) is the 
energy term independent of e*. The interaction 
between precipitate particles is neglected, provided 
that f ~  1. 

From the stability of the system, OG/Oe*= 0 
and O2G/Se*2 > 0 [6]. Therefore, 

a A = 3Aue*  f F f 
1 --BE 1 - - ~  (2) 

The amount of work hardening, Ao, is given by 

3 f 
Ao = --Aue* - -  (3) 

2 1 - - B f  

Substituting Equation 2 into Equation 1, 

G : -- �88 + Eo(e~) (4) 

2#'(7 - -  5v) 
A = 

2•'(4 -- 5v) + #(7 -- 5v) 
and 

15#'(1 -- v) 
B =  

2#'(4 -- 5v) + #(7 -- 5v) 

for spherical particles with the rigidity /f  and 
Poisson's ratio v' which are different from the 
values of the matrix,/1 and v [7]. Work hardening 
of the material arises from back stress in the matrix 
induced by Orowan loops [3]. e* is identical with 
the measured plastic strain, e, when neither 
annihilation of Orowan loops by climb nor plastic 
accommodation occurs. 

No volume change occurs in plastic deforma- 
tion; however, change in shape of the matrix 
around a precipitate particle (radius r) results in 

an excess of matrix volume, shown as the shaded 
part (or a deficit of volume as the hatched part) in 
Fig. 1. From the geometrical consideration, the 
total excess (or deficit) of volume, AV, is given by 
Equation 5, neglecting the terms of higher order 
ine*: 

3112 

A v  - - -  e* v ( v :  ~-~r 3) ( s )  
3 

Ashby [5] obtained 7pV/8 as the value of AV/2 
for shear deformation (7p is plastic shear strain). 
A uniform distribution of dislocation loops 
around a particle is assumed in the present calcu- 
lation, whereas the annihilation process of dislo- 
cation loops in each slip system is still unknown. 
It is considered that the change in Gibbs free 
energy of the material is caused by diffusion 
of atoms in the matrix, which accommodates the 
misfit strain between a particle and the matrix, 
and consequently leads to annihilation of dislo- 
cation loops. Further, the effects of the other 
accommodation processes such as cross-slip or 
formation of prismatic loops is neglected here. 
The number of atoms contained in V for e* and 
that for e are, respectively, given by 

AV 3u2e*V 
n - - (6) 

~2 3~2 

3:/2eV 
no ' -  (7) 

3f2 

where ~2 is the atomic volume. 
The Gibbs free energy of the system is also 
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expressed by Equation 8, substituting Equation 6 
into Equation 4: 

G - 9Al~n2~22 t- Eo(o~)  (8) 
4 V  

If the free energy is changed by dG due to migra- 
tion of atoms, dn, from the region of volume 
excess to that of volume deficit, the difference in 
chemical potential between the emission and 
absorption sides of atoms, #* (or in other words, 
the "force" acting on a migrating atom [8]), is 
given by 

dG 9A#n~22 
/ 1 " -  - (9) 

dn 2V 

The migration rate of atoms, (dn/dt),  is then 
considered. Since the diffusion distance is approxi- 
mately equal to the radius, r, of a spherical precipi- 
tate in this case, the flux of atoms is given by 

D 9AIJn~2D 
J - grad U* - (10) 

fZk T 2k Tr V 

where k is Boltzmann's constant, T absolute tem- 
perature and D the diffusion constant. D in 
Equation 10 is given as D v when the migration 
of atoms is controlled by volume diffusion. The 
total cross-section of diffusion is considered to be 
approximately nr 2, since stresses outside a par- 
t ide fall off as (r/R) 3, where R is the distance 
from the particle centre. Further, the recovery 
process is considered to be controlled by grain 
boundary diffusion when the interface between 
a precipitate particle and matrix is a grain bound- 
ary or a non-coherent interface. The total cross- 
section of diffusion is approximately 2~8 (8 is 
the thickness of the grain boundary) and D should 
be replaced by DaB for grain boundary diffusion. 
The migration rate of atoms for volume diffusion 
and that for grain boundary diffusion are, 
respectively, given by 

d~) 9 rrr2Alang2Dv 
v -- rgr2j -- 2kTrV 

27AlanaDv (11) 
8rZkT 

d(~_~) 27Atang2DaB6 
_ 2rrrSJ = (12) 

aB 4r 3kT 

The migration rate of atoms is proportional to r -2 
for volume diffusion and to r -3 for grain bound- 
ary diffusion. This is consistent with the calculated 
result of Ashby [5]. 

In tensile tests of the material at elevated tem- 
peratures, an increment in excess (or deficit) of 
atoms with time, dno/dt, produced under a strain 
rate ~(= de~dO is decreased by the diffusion- 
controlled recovery by (dn/dt) v or (dn/dt)GB. 
The total migration rate for volume diffusion is 
given by 

dn dno [d '~ 
(13) 

dt dt v 

Differentiating Equation 7 with respect to t, and 
substituting the result together with Equation 11 
into Equation 13, the total migration rate is also 
given by 

dn 31/2 V~ 27A/~g2Dv 
dt 392 8r2k T n B - - C n  (14) 

where B = 31/2 V~/392 and C = 27A#g2Dv/Sr2kT. 

In the case of grain boundary diffusion, C in 
the above equation should be replaced by 
27A/~E2DGB8/4rakT. 

If Equation 14 is solved by putting n = 0 for 
t = 0 under a constant strain rate (more rigorously, 
under a constant plastic strain rate), the following 
solution is obtained: 

- e - c ' )  ( 1 5 )  n ? ( 1  

Since e = ~t for a constant strain rate, n is also 
given by 

- e -  c~,~)  (15) '  n = ~ (1  

Substituting the above equation into Equations 3 
and 6, 

e-C~/~) e * =  5 ( 1 - -  (16) 

3 f ~ e_Ce/~ ) A o - - - - - - A / l - - "  (1--  (17) 
2 1 - - f B  

Therefore, the work hardening rate of the material, 
0 (= d(Ao)/de), is derived from Equation 17 and is 
written as follows: 

3 f e_Ce/~ 0 = - - A / ~ - -  (lS) 
2 1 - f S  

3. Experimental results 
Tensile tests were performed on two kinds of aged 
21Cr-4Ni-9Mn austenite steels with M2aC6 
carbides under a constant strain rate of 1.33 x 
10-4sec -1 in the temperature range from 306K 
(33~ to 1073 K (800~ The 21Cr-4Ni-gMn 
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Figure 2 The work hardening 
rate against temperature in 
austenitic 21Cr-4Ni-9Mn 
steel. 

austenite steel in this study has the basic com- 
ponents of 0.51% C, 0.40% N, 20.22% Cr, 3.90% 
Ni and 8.75% Mn. The steel was water-quenched 
after solution heating for 3.6 ksec (1 h) at 1473 K 
(1200~ Then, the simple ageing treatment, 
which consisted of heating for 108 ksec (30 h) at 
1023 K (750 ~ C) and subsequent air-cooling, was 
employed to develop 7.1 vol% of M23C6 carbides 
(particle radius of 5.3 x 10 -sm). The two-step 
ageing treatment which involved ageing for 108 ksec 
at 1273 K (1000 ~ C) after pre-ageing for 108ksec 
at 973 K (700 ~ C) was also performed to develop 
6.1 vol% of the precipitates (particle radius of 
7.4 x 10-8m). Further, other kinds of precipi- 
tates were not detected in this steel using trans- 
mission electron microscopy. Fig. 2 shows the 
work hardening rate at e = 0.01 in the rapid 
hardening region, 0T, against test temperature. 
The temperature dependence of work hardening 
was also found in solid solution without precipi- 
tates. A considerable contribution of solid solution 
hardening can be expected in this steel with a 
large amount of carbon and nitrogen [9]. The solid 
solution hardening is proportional to the square 
root of the concentration of solute atoms in the 
matrix [10]. The work hardening rate of solid 
solution with about 3.9 at % carbon and nitrogen, 
0st , was experimentally obtained in a tensile test 
at room temperature (306 K). The contribution of 
solid solution hardening at elevated temperatures, 
(0sol.)T , was then calculated for aged steel using 
the following equation. The result of this calcu- 
lation is also shown in Fig. 2. 

CT11/2 
(0SO].)T : 0st /L/T - -  (19) 

#RT \Co/ 

where Co and CT are the concentrations of solute 
atoms in the matrix for the solid solution and 
for aged steel, respectively. These can be obtained 
from the measurement of the lattice parameter of 
the austenite matrix by means of X-ray diffrac- 
tion, using the relationship between lattice para- 
meter and dissolved carbon plus nitrogen content 
in the matrix of this steel [11]. Those values used 
in the calculation were c w = 2.32 at % for the steel 
with f = 0 . 0 6 1 ,  2.06at% for that with f =  0.071 
and Co = 3.91 at% for solid solution. ]ART and ]A T 
are the rigidity of the matrix at room temperature 
and that at elevated temperatures, respectively. 
The rigidity and Poisson's ratio of AISI316 steel at 
elevated temperatures were used in the calculation 
of this study [12], since those values are still 
unknown for 21Cr-4Ni-9Mn steel. 

Fig. 3 shows the temperature dependence of 
the net work hardening rate due only to the 
presence of precipitate particles. The values in 
this figure were obtained by subtracting the contri- 
bution of solid solution hardening calculated by 
Equation 19 from the experimental values and 
then these were temperature-compensated. Change 
in the work hardening rate occurs in the tempera- 
ture range from about 770 to l l00K.  A decrease 
in the work hardening rate can be observed at a 
lower temperature and the extent of it is larger in 
the steel with precipitates of the smaller particle 
size in this figure. 
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Figure 3 Temperature depen- 
dence of the normalized work 
hardening rate in austenitic 
21Cr-4Ni-9Mn steel. 

4. Discussions 
4.1. Work hardening rate and 

stress-strain curve 
Fig. 4 shows the result of  calculation of  Equation 
18 and the temperature-compensated work hard- 
ening rate for e = 0.01. It was assumed from the 
result of  the tensile test at room temperature that 
the values of rigidity,/S, and Poisson's ratio, u', of 
M23C6 carbides are the same as those of  the 
austenite matrix ( / l '= / l ,  u ' =  u), and therefore, 
A = 2(7 -- Sv)/15(1--  u) and B = I .  The acti- 
vation energy and diffusion constant for self- 
diffusion in 7-re  [ Q = 2 7 0 k J m o 1 - 1  (64.5kcal 
mol-1), Dvo = 1.8 x 10 -s m 2 sec -1] [13], and the 
value of  the activation energy, Q = 253 kJ mo1-1, 
were used in the numerical calculation. The latter 
value of Q lies between the apparent activation 
energy for creep (236kJmo1-1)  of  the steel used 

1,0 - -  

(I) 

O.8 

,,,!~ 0.6 

ro~ 0.4 

0.2 

0 

in this study [14] and the activation energy for 
self-diffusion in "r-Fe. Good agreement is found 
between the experimental and calculated work 
hardening rates for Q = 253kJmo1-1, while the 
calculated value for Q = 270 kJ mo1-1 is slightly 
higher. The particle size dependence of  the work 
hardening rate at elevated temperatures can be also 
satisfactorily explained by the result of  the theor- 
etical calculation in this study. The change in the 
actual work hardening rate was observed in a 
slightly wider temperature range compared with 
the result of  calculation. This can be attributed 
primarily to the particle size distribution of  preci- 
pitates, as pointed out by Matsuura [3], and 
secondly to the fact that the climb and annihi- 
lation process of  individual dislocation loops is not 
considered in the present calculation. 

Figs. 5 and 6 show the calculated and exper- 
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Figure 4 Comparison of the 
normalized work hardening 
rate by calculation with that 
of experiment in austenitic 
21Cr-4Ni-gMn steel. 
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Figure 5 The calculated stress-strain curve 
and the experimental one in auste.nitic 
21Cr-4Ni-gMn steel (~ = 5.3 XlO -Sin, 
: =  O.o7D. 

imental stress-strain curvea of the steels after 
yielding. There is good agreement between the cal- 
culated and experimental cmwes for (2-= 253 kJ 
tool-< As already described, the contribution of 
solid solution hardening is also expected in this 
steel. However, the stress-strain curve of the solid 
solution in the high-temperature range could not 
be obtained in this study, because carbon and 
nitrogen have a strong tendency tG form precipi- 
tates as the sample is heated up to and main- 
tained at the test temperatures. Therefore, the 
contribution of solid solution hardening to the 
work hardening behaviour of the material was 
estimated by Equation 2 0  based on the result 
of the tensile test on the solid solution at room 
temperature, 

N,,f /C T ,~,/2 
as--  [~-0) (94069"96~ -- 564) (MPa) 

~RT (20) 

where e > 0.0005. Figs. 7 and S show the calcu- 
lated stress-strain curves in which the contri- 
bution of solid solution hardening is taken into 
account, and the experimental curves. Much 
bette~ agreement is found belween the result 
of the calculation and that of experiment in these 
figures than in Figs. 5 and 6. The work hardening 
rate of the steels increases with an increase of 
strain rate, as shown in F~g. 9, although the con- 
tribution of solid solution hardening is not involved 
in the calculation. This increase is greater i~ the 
steel with p~ecipitates of larger particle size. 
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Figure 6 The calculated stress-strain curve 
and the experimental one in austenitic 
21Cr-4Ni-gMn steel (r = 7.4 x10 -Sin, 
f =  o.o61). 

Thus, in this study, the temperature and par- 
ticle size dependence of  the work hardening rate in 
metallic materials with spherical second-phase par- 
ticles can be explained by the continuum mech- 
anics model without any ambiguous parameters, 
even if the annihilation process of  each dislocation 
loop around precipitates is quite unknown. 

4.2. internal stress during 
high-temperature creep 

The continuum mechanics model in this study 
can be also applied to the interpretation of 
internal stress in the steel with spherical precipi- 
tates during high-temperature creep. The work 
hardening is balanced with the recovery in steady- 
state creep, and therefore, d(Ao)/de = 0. Using 

Equation 17, the amount of  work hardening, Ao, 

is given by 
7 -  5~ f d zxo - , (2l) 

5(1 -- u) 1 - - f  C 

The internal stress during creep is given by Ao + 
oo, since the Orowan stress, oo, is approximately 
2t~b/l, where I is the mean interparticle spacing and 
b the magnitude of  the Burgers' vector, respec- 
tively. Fig. 10 shows the internal stress values, oi, 
which were experimentally obtained by one of  the 
authors [14], and the calculated values of  Act + Oo 
for r =  5.3 x l 0 -Sm ( I = 1 . 0 6 •  by the 
steady-state creep model. The experimental value 
of /J ,  65 GPa, in this steel was used in this calcu- 
lation. The calculated internal stress, Ao + Oo, and 
the experimental value, oi, are almost the same 
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Figure 7 The calculated stress-strain curve 
which involves the contribution of solid 
solution hardening and the experimental 
o n e  in austenitic 21Cr-4Ni-gMn steel 
(r=5.3Xl0-Sm, f=0.071). 

and independent of the steady-state creep rate. 
Ao is very small compared with cro, while it 
increases with an increase in the steady-state creep 
rate. The creep rate is extremely high and decreases 
rapidly with an increase of time in the transient 
creep regime. Such a path-dependence of creep 
deformation can also be taken into account by 
numerically integrating Equation 14 by the 
Runge-Kutta method. Fig. 11 shows an example 
of the result of calculation. The value of A~r/cro 
decreases abruptly with an increase of time to 
reach the calculated value shown in Fig. 10, while 
it is large in the early stage of creep. 

The continuum mechanics model in this study 
incorporates the recovery effect by diffusion of 
atoms and involves no parameters whose physical 
meaning is ambiguous. It can explain quantita- 

tively the high-temperature deformation of the 
metallic material with second-phase particles, using 
numerical values of particle size and volume frac- 
tion of the second phase, and physical constants. 
Further, it is also applicable to the prediction of 
work hardening behaviour for the design of 
materials. 

5. Conclusion 
A continuum mechanics model without any 
ambiguous parameters was developed to explain 
the temperature and particle size dependence of 
the work hardening behaviour of a metallic 
material with non-deforming second-phase par- 
ticles at elevated temperatures where the dynamic 
recovery due to volume diffusion of atoms is 
predominant. Good agreement was found between 
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Figure 8 The calculated stress-strain curve 
which involves the contribution of solid 
solution hardening and the experimental 
one in austenitic 21Cr-4Ni-9Mn steel 
(r --- 7.4 X 10 -8 re, f =  0.061). 

the result of  calculation based on this model  and 
experimental  results. The results obtained are sum- 
marized as follows. 

1. The differential equation of  the primary 
reaction was derived, based on the dynamic 
recovery model  that diffusion of atoms in a matrix 
causes the change in the Gibbs free energy, and 
that the climb and annihilation of  dislocation 
loops occurs as a result of  accommodat ion of  the 
misfit strain between a precipitate particle and the 
matrix. 

2. The differential equation can be solved when 
the strain rate is constant.  As far as the tempera- 
ture and particle size dependence of  the work 
hardening behaviour were concerned, good agree- 
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ment  was confirmed between the result of  calcu- 
lation which involved the contr ibut ion of solid 
solution hardening and that of  the tensile test on 
an austenitic heat-resisting steel with M23C6 
carbides. 

3. This model  is also applicable to the interpre- 
tat ion of the internal stress in high-temperature 
creep. The calculated internal stress during steady- 
state creep was almost the same as the experimen- 

tal value of  an austenitic heat-resisting steel with 
M23C6 carbides. Its steady-state creep rate depen- 
dence also coincided with the experimental result. 
The theoretical internal stress when the path 
dependence of  creep deformation was taken into 
account reached the calculated value based on the 
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Figure 9 Strain rate dependence of the 
work hardening behaviour in austenitic 
21 Cz-4 Ni-9 Mn steel. 

steady-state creep model after long term creep, 
while the amount of work hardening was large in 
the early stage of creep. 

4. The continuum mechanics model in this 
s tudy involves no ambiguous parameters. There- 
fore, the work hardening behaviour of the metallic 
material with non-deforming second-phase par- 
ticles at elevated temperatures can be calculated 
using physical constants, if the partic[e size and 

volume fraction of the second phase are known. 
This model is also applicable to the prediction of 
high-temperature deformation of the material with 
precipitates or dispersoids. 
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